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ABSTRACT

We present a temporal constraint language to help developers
maintain a defined separation between platform-specific behavior
contingencies and the domain logic in high-level agent programs.
It is implemented as an optional feature in the agent programming
and interfacing framework golog++.

I. THE PROBLEM

GOLOG is a family of languages for the specification of
high-level strategic behavior that allows the programmer to
freely mix planning with scripting. Despite their inherent
flexibility and expressivity, GOLOG-based languages have
yet to make the leap from academic and laboratory use
to production applications in an industrial context. Looking
back on many years of using various GOLOG dialects in
diverse scenarios [1]–[7], we can conclude that the funda-
mental idea of the language is viable for a wide range of
domains. However, when it comes to long-term use of a high-
level behavior control language in a production environment,
a language must satisfy requirements that go far beyond
flexibility and expressivity.

Requirements change and robotic hardware platforms
evolve constantly. Advances in sensory devices and effec-
tors may open new behavioral options (through increased
payload, range, speed, etc.), but may also bring new restric-
tions (e.g. through increased power consumption, thermal
constraints, etc.).

A high-level agent language must support short develop-
ment cycles in a field where the classical separation between
strategic decision-making and a reactive behavioral layer is
difficult to maintain. Consider an RGB-D camera used for
object recognition (cf. Fig. 2). Such cameras typically need
to be switched off when they are not being used. Switching
on usually takes a few seconds, so we want to make sure
that it is ready just before it will be used. When we hide
such maintenance actions within the reactive layer, we lose
the ability to perform them in a clever, circumspect manner.
When we model them within the strategic layer, we can
make smart decisions, but we are also breaking separation of
concerns and we are compounding the problem complexity.

Practical experience also shows that seemingly simple
tasks can turn out to be quite complex when we factor in
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runtime robustness against both internal errors and external
disturbances. We cannot ignore engineering issues, so clearly
defined, rigid interfaces are essential, and a language must
be able to enforce them and check their consistency before
anything is executed.

Despite making important progress in runtime semantics,
the classical Prolog-based GOLOG implementations (cf. [8]–
[10] among others) all suffer from blurry language bound-
aries, a lack of both consistency checking and error handling,
as well as largely undefined runtime platform interfaces. As
such, these implementations are not suitable for maintaining
larger code bases within a production environment.

II. THE SOLUTION

We present the GOLOG-based development and interfac-
ing framework golog++ [11] that addresses the problems
outlined above. It is inspired by previous work on more
practically oriented GOLOG implementations like YAGI [12]
and golog.lua [13]. A built-in temporal constraint language
allows the programmer to construct an explicit model of
runtime contingencies (a platform model for short), the
fundamental ideas of which have been explored in [14].

At the core of golog++ is an event-based execution
Controller (cf. Fig. 1) that coordinates program interpretation
(the Transition Function) and plan Transformation with
endogenous dispatch and exogenous event handling (to/from
the Platform Backend respectively).

Controller

〈Σ, s0,Π, p← p0, δ ← δ0〉

Platform
Backend

qexog

a
twake

Transition
Function

〈Σ, s, δ〉

〈δ, l← l0〉

Transformation

〈Π, p, l〉l

Fig. 1. Flow of events and information between the major components
involved in program execution. Σ is the domain model (basic action theory
in GOLOG jargon), s0 is the initial domain situation and s is the current
domain situation. Likewise, Π is the platform model, p0 is the initial
platform state and p is the current platform state. δ0 is the initial program
and δ is the remaining program given the actions executed so far. l0 is the
abstract plan (without maintenance actions and time windows), and l is the
current transformed plan.

A platform model Π is composed of a set of component
models and a set of constraint formulas. A component
model is a timed automaton [15] that describes the runtime
behavior of a hardware component or a lower-level software



component. Transitions between the individual states of a
component can be either endogenous (i.e. controlled by the
agent, like switching a camera on or off) or exogenous
(i.e. uncontrolled, like a shutdown due to overheating or a
battery failure). Such a component model is then linked to the
structure of a plan by temporal constraint formulas [16] based
on MITL semantics [17]. Simply put, a constraint formula
is an implication φ ⊃ ψ, where φ is a temporal formula that
refers only to action terms from the domain theory Σ, and
ψ is a temporal formula that refers only to states from the
platform model Π.

The realsense component shown in Fig. 2 remains in the
boot state for 2 to 4 seconds. The transition from off to boot
can be triggered by inserting the appropriate maintenance
action, but the transition from boot to on is exogenous, so the
agent has to wait for it. The transformed schedule will thus
always trigger the off => boot transition at least 2 seconds
before a scan(*) action is performed.

component realsense {
clocks: bcl
states: off, boot (bcl < 4), on, error
transitions: on => off, off => boot resets(bcl),

boot ->(bcl > 2) on, error => off
}
constraints {

during(scan(*)): state(realsense) = on;
during(go_to(*)): state(realsense) = off;

}

Fig. 2. Exemplary component model with constraints.

Just before an abstract (i.e. platform-agnostic) plan l0 is
executed, the plan Transformation turns it into a temporal
schedule l that is guaranteed to satisfy the platform model.
In l, each action a has a time window [tmin(a), tmax (a)] and
likewise timed maintenance actions are inserted to satisfy the
platform model Π, cf. [18]. If tmin(a) has not yet arrived for
a = head(l), the Controller schedules an exogenous wakeup
at twake = tmin(a). If a is not (yet) executable (for any
reason), the Controller blocks on qexog . When the Platform
Backend (asynchronously) enqueues an exogenous event to
qexog , the controller checks a’s preconditions (including the
time window) again. In case a missed tmax or a component
has changed state exogenously, it triggers a re-transformation
of l to (hopefully) find another conformant schedule. If this
fails, it means that platform-conformant plan execution has
failed unrecoverably and control is escalated up to the parent
of the planner call.

To help usability, robustness and collaboration, golog++ is
also typesafe, which allows the construction of an expressive
static code model that guarantees referential consistency
across the entire codebase. Blurry language bounds also not
an issue since it comes with a parser for a well-readable,
C++-like notation that eases the initiation of new developers.

III. CONCLUSION

Since our constraint logic is independent from the GOLOG
basic action theory yet compatible with its online execu-
tion semantics, our domain reasoning scales with the do-
main complexity alone, while we’re still able to cope with
platform-specific contingencies at the knowledge level. The

flexibility of our GOLOG language allows much more free-
dom in defining execution strategies than purely planning-
based approaches. We can control when and how much is
planned, and this behavior in turn can be made dependent on
the outcomes of earlier plan executions. In particular, we can
react freely to failures of the composite plan-and-transform
system. This, and the rigid syntax with strict and precise
static error handling make it both a robust and sustainable
platform and a helpful tool to study dynamic failure recovery
strategies.
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