
Bridging the Gap between the Open-source Task-Space Constraint-Based

Control Framework and Real-World Human-Robot Interaction Applications

Anastasia Bolotnikova1,2

Abstract— Real-world robotics applications require the use
of affordable, mass-produced robots. At the same time, robust
performance in real-world settings is still a research problem,
which requires cutting-edge developments from academia. We
present the open-source software toolkit that bridges the gap
between advanced constraint-based Quadratic Programming
task-space motion control framework, developed in academia,
and the affordable and mass-produced robots widely used in
a variety of real-world applications, produced by SoftBank
Robotics Europe. We describe the developed tools and outline
how they facilitate development of controllers for real-world
applications focusing on assistive human-robot interaction.

I. INTRODUCTION

An advanced and powerful Quadratic Programming (QP)

task-space control framework [1], called mc rtc, is now

available in opensource1. It is developed in the research

community and oriented towards cutting-edge technologies

in constraint-based QP task-space robot(s) motion control.

Originally, mc rtc was mainly used with high-cost research

platforms. As the framework gained maturity, it became ev-

ident that other robotics platforms can benefit from its func-

tionalities; now the control framework is robot-independent.

However, to enable mc rtc framework to compose QP

objectives and constraints for the motion control of any

new type of robot, a robot description package needs to be

provided and a robot module software component needs to

be developed. These components allow to take full advantage

of the mc rtc framework functionality for the new type of

robot in simulation. In order to enable framework users to

control a real robot of a particular type, an interface must

be developed to allow communication between the mc rtc

and the robot’s low-level controllers, sensors and devices.

The aim of this work is to present the open-source

software interface, called mc naoqi2 (Sec. II), for execut-

ing mc rtc controllers on widely used SoftBank Robotics

Europe (SBRE) robots [2], [3]. We also open-source robot

description packages and modules (Sec. III) and sample

controllers (Sec. IV). Finally, we demonstrate and discuss

how the developed tools facilitate development of controllers

for real-world human-robot interaction (HRI) applications

(Sec. V). Fig. 1 shows an overview of the developed tools and

their interconnections, described concisely in this document

and in more detail in our recently submitted work [4].

1SoftBank Robotics Europe, Paris, France
2University of Montpellier–CNRS LIRMM, Interactive Digital Humans,

Montpellier, France
1https://jrl-umi3218.github.io/mc_rtc
2https://github.com/jrl-umi3218/mc_naoqi

mc_rtc (FSM) controller

QP solver real robot state

control robot state

Robot
description

Robot
module

result

mc_naoqi
control interface

mc_naoqi_dcm
Local robot module

Real robot
Robot sensors readings from
low-level memory fast access

Fixed frame rate low-level actuator commands
Other robot device commands

Used by

Sensor data
- encoders
- electric current
- IMU
- touch sensors
- FSR *
- …

* NAO robot only

Device commands
actuators -

LEDs colors -
speakers audio -
wheels speed* -

tablet image* -
… -

* Pepper robot only

Update real robot state
with new sensor data

URDF file
Links meshes

Contact surfaces description files
Convex collision shapes description files

Forward QP solver result for new actuator commands
Forward control robot module devices state for new

devices commands

Instances of

Used by

Structure representing complete robot description
Kinematic tree parsed from URDF file, contact surfaces,

convex collision avoidance shapes, visual and physical links
representations, devices and sensors state representation,

current robot state representation

human model state

Fig. 1: mc naoqi interface enables communication between

SBRE humanoid robots and mc rtc control framework. It

can be used to steer the robot behaviour in HRI applications.

II. CONTROL INTERFACE

Fig. 1 illustrates the role of the mc naoqi interface as

a communication layer between mc rtc control framework

and NAOqi operating system running onboard SBRE robots.

The mc naoqi interface is forwarding fixed frame rate

control commands from the QP solver of mc rtc controller

to the onboard low-level robot actuators control. For user-

friendly and interacting humanoid robots, it is highly bene-

ficial to endow mc rtc controller with the functionality to

also forward other device commands, such as sentence to

play from the speakers, desired tablet screen image or eye

led color, from the mc rtc controller to the robot devices

via mc naoqi interface. This functionality allows mc rtc

framework users to develop controllers which can provide a

richer interaction experience for HRI applications.

https://jrl-umi3218.github.io/mc_rtc
https://github.com/jrl-umi3218/mc_naoqi

The mc naoqi interface is also responsible for getting

the most up-to-date sensor readings from a robot low-level

memory in real-time and forwarding sensor measurements

in a suitable form to the mc rtc controller real robot state

representation as a feedback. This way, the task-space QP

controller keeps track of the real robot state and can use it

to perform closed-loop QP control computations.

Besides the encoder values, force sensor and IMU mea-

surements, mc naoqi interface also forwards to the mc rtc

controller an electric motor current and touch sensor read-

ings. For HRI applications, the touch sensor readings are

especially beneficial to be forwarded to the controller, as

they allow to detect when a human touches the robot. Such

a signal can be used inside the mc rtc controller logic to

trigger an appropriate reaction of the robot to the touch.

A customized local robot low-level module, called

mc naoqi dcm3, is cross-compiled for NAOqi OS and is

set to run onboard the robot to read sensor values and

set device commands via Device Communication Manager

(DCM) every 12 ms. A fast access to the low-level robot

memory is initialized when mc naoqi dcm starts to run

on the robot. This allows to read a predefined set of sensor

values from robot memory in the fastest way.

III. ROBOT DESCRIPTION AND MODULE

To control any robot with mc rtc framework, a basic

description of this robot needs to be provided. Such robot

description includes robot kinematic tree, dynamic proper-

ties of the links, description of robot contact surfaces (i.e.

covers), and convex anti-collision shapes. With this work, we

release the robot descriptions for NAO4 and Pepper5 robots.

As shown in Fig. 1, a robot description is used by a

robot module to create a structure that provides a complete

description of the robot: kinematic tree parsed from URDF

files, visual and physical representations of robot links,

surfaces attached to the robot bodies, sensors and other de-

vices, strictly convex hulls and primitive shapes for collision

avoidance, etc. The instance of this structure is used by the

mc rtc framework, as control robot state representation, to

formulate the QP objectives and constraints. We make the

robot modules for NAO6 and Pepper7 publicly available with

this work. For fast prototyping and experiments, the robot

description and module can easily be augmented with any

new robot hardware elements, e.g. new onboard camera.

The Pepper robot module exploits a generic robot devices

feature of mc rtc, which allows to add any kind of custom

device representation as part of the robot module. Currently

implemented devices in the Pepper robot module are loud-

speaker, visual display and touch sensor. An example of robot

specific tasks and constraints are also present in the released

robot module and can serve as an example of implementation

of such custom elements.

3https://github.com/jrl-umi3218/mc_naoqi_dcm
4https://github.com/jrl-umi3218/nao_description
5https://github.com/jrl-umi3218/pepper_description
6https://github.com/jrl-umi3218/mc_nao
7https://github.com/jrl-umi3218/mc_pepper

IV. SAMPLE CONTROLLERS

To facilitate of writing a new mc rtc controller, espe-

cially for new potential users of the framework, we provide

a basic sample PepperFSMController8 (Fig. 2). It can be

used as a starting point for new controller development or as

an example of how similar projects should be implemented.

Fig. 2: RViz scenes of sample FSM Pepper controller states.

On the topic/withHumanModel branch of this

project, a multi-robot QP (MQP) feature is exploited by

adding a human model and its state as part of the controller

(recall Fig. 1). A human model is integrated into mc rtc

exactly the same way as any other robot model, by providing

a description9 and implementing a corresponding software

module10. This MQP controller can be used to develop and

simulate a wide variety of HRI scenarios (e.g. Fig. 3).

Fig. 3: Simulated NavigateToHuman state of a sample MQP

mc rtc FSM controller with a human model included.

V. REAL-WORLD APPLICATIONS: ASSISTIVE HRI

In our recent work, we have showcased how the de-

veloped tools, described in the current work, can be used

to enable Pepper robot to perform autonomous initiation

of human physical assistance [5]. The controller code is

publicly available and it shows how our developed software

components allow to efficiently create complex controllers

for rich, intuitive and efficient sensor-based HRI. This in-

cludes closed-loop navigation toward human, verbal, visual

and body language communication, and physical interaction.

Furthermore, parts of developed controllers can easily be

reused, which allows for rapid development of controllers for

new HRI applications. For instance, we demonstrate in a new

demo how a Pepper robot performs autonomous medicine

delivery (Fig. 4). For this new controller, the code for the

closed-loop navigation toward a human was directly reused

from the previous work. Development of other controller

parts only took a few days for an experienced user.

8https://github.com/jrl-umi3218/pepper-fsm-controller
9https://github.com/jrl-umi3218/human_description
10https://github.com/jrl-umi3218/mc_human

https://github.com/jrl-umi3218/mc_naoqi_dcm
https://github.com/jrl-umi3218/nao_description
https://github.com/jrl-umi3218/pepper_description
https://github.com/jrl-umi3218/mc_nao
https://github.com/jrl-umi3218/mc_pepper
https://github.com/jrl-umi3218/pepper-fsm-controller
https://github.com/jrl-umi3218/human_description
https://github.com/jrl-umi3218/mc_human

(a) Navigation to the human (b) Verbal communication (c) Human takes the pills (d) Human takes the bottle

Fig. 4: Experiment screenshots (top), perceived robot state, Azure Kinect point cloud and human body markers (bottom).

Fig. 4 shows excerpts screenshots from the experiment

video. In the bottom row images, the scenes are visualized in

RViz. Note, that additional hardware, namely Azure Kinect,

which is used for human state feedback, and RealSense

camera, which is included in the robot prototype, but not

used in this experiment, are easily included in the robot

description (Fig. 5) and processed by the robot module, and

therefore are also included in the QP problem formulation

(e.g. for more accurate robot center of mass computation).

Full experiment can be seen in the accompanying video.

Fig. 5: Extra hardware included in the prototype Pepper robot

Once the robot reaches a position nearby the person, it

communicates verbally its intention to pass the medicine

(Fig. 4b). Then it proceeds to open its right gripper for the

person to take the pills (Fig. 4c). The passing of the bottle

with liquid is arranged with the help of the robot module

feature, described in Sec. III, that allows to forward robot

tactile sensor data to the mc rtc controller, which then

triggers robot left hand gripper to open slightly to allow the

person to get out the bottle more easily (Fig. 4d).

Fig. 6 shows the progress of the closed-loop PBVS task,

that uses Azure Kinect body tracking for feedback to make

the robot navigate to the person (Fig. 4a). Task errors

eventually converge near zero, although in a not very smooth

way. This is due to the low quality of human detection (that

prohibits constant usage in a continuous closed-loop way),

and the low detection frame rate and latency issues (that

limits the speed in reaching the person).

We encourage interested readers to see the video presen-

tation associated with this work. The video demonstrates the

Fig. 6: Evolution of Position Based Visual Servoing closed-

loop Pepper mobile base navigation to human task errors

autonomous medicine delivery HRI application experiment

and describes the scheme from Fig. 1 in detail.

VI. FUTURE WORK

Next, we intend to showcase the advantage of use of our

software tools in real-world assistive HRI settings: interac-

tion with real patients in hospitals and retirement homes.

REFERENCES

[1] K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Quadratic
programming for multirobot and task-space force control,” IEEE Trans-

actions on Robotics, vol. 35, no. 1, pp. 64–77, 2019.
[2] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-

cade, B. Marnier, J. Serre, and B. Maisonnier, “Mechatronic design
of nao humanoid,” in IEEE International Conference on Robotics and

Automation, pp. 769–774, IEEE, 2009.
[3] A. Pandey and R. Gelin, “A mass-produced sociable humanoid robot:

pepper: the first machine of its kind,” IEEE Robotics & Automation

Magazine, vol. 25, no. 3, pp. 40–48, 2018.
[4] A. Bolotnikova, P. Gergondet, A. Tanguy, S. Courtois, and A. Kheddar,

“Task-space control interface for softbank humanoid robots and its
human-robot interaction applications.” submitted to IEEE/SICE Inter-
national Symposium on System Integration (SII 2021), August 2020.

[5] A. Bolotnikova, S. Courtois, and A. Kheddar, “Autonomous initiation
of human physical assistance by a humanoid,” in IEEE International

Conference on Robot and Human Interactive Communication, (Naples,
Italy), 31 August–4 September 2020.

	Introduction
	Control Interface
	Robot description and module
	Sample controllers
	Real-world applications: assistive HRI
	Future work
	References

