
Constraint-based Dual Arm Control
for Automated Wiring of Electrical Cabinets

Lorenz Halt∗ and Philipp Tenbrock∗

Abstract— In this application we explore a new approach
to automated wire handling in order to decrease longterm
maintenance efforts and speed up development — reducing
specialized hardware to a minimum, while handling the com-
plexity with software. A high reuse rate of previously developed
and thoroughly tested robotic skills minimized the risk of
software bugs. The constraint-based programming approach
made manual transformations between the task space of the
previously planned wiring map and the robot operation space
obsolete and reduced the overall development time dramatically.

I. INTRODUCTION AND PROJECT

Handling flexible and pliable materials is a challenging
task in automated production. Often, complex and special-
ized tooling is used to allow predictions about the materials
by mechanically restricting or guiding during handling. In
most cases, a human worker is required if the uncertainties
cannot be limited mechanically.

Cables and single wires fall into this category of difficult
materials for automated manipulation. Electrical cabinets are
good examples of highly customizable industrial products,
for which automation suffers under the complexity of the
handled materials. A typical electrical cabinet consists of a
base plate with attached electrical components and intercon-
necting cable ducts. Based on the actual configuration indi-
vidual components are connected with wires running within
the cable ducts, respectively. Both, the electrical component
configuration and a map of all wires can be virtually planned
with CAD tools and automatically optimized. However, the
actual process of wiring is a manual operation.

In this application we explored a new approach to auto-
mated wire handling — reducing specialized hardware to a
minimum while handling the complexity of the application
with software.

By following this paradigm, we want to reduce the
longterm hardware maintenance efforts and speed up devel-
opment by a) prototyping and testing with standardized hard-
ware that is easily duplicatable and b) fast reconfigurability
because software is updated instead of hardware.

However, the psychological drawbacks of the approach
are a) the potential underestimation of the software com-
plexity and thus the need for strongly structured program-
ming methodology, such as skill-based programming, and
b) doubts and mistrust of the general stability of software
solutions in comparison to mechanical approaches.

∗Lorenz Halt and Philipp Tenbrock are with the Fraunhofer Institute for
Manufacturing Engineering and Automation IPA, Stuttgart, Germany
{lth,pgt}@ipa.fhg.de

Fig. 1. Robotic dual arm setup for automated wiring of electrical cabinets2.

Inspired by human anatomy, two Universal Robot UR10
arms were installed in a shoulder-like configuration (Fig. 1).
Both were equipped with a force-torque sensor and a two-
finger electrical gripper, each. The gripper fingers serve two
distinct purposes — fixing the to-be-connected tip of the wire
and guiding the wire while routing through the cable ducts.
The fingers were specially designed for being a simple mass
product without active components.

The robotic production cell is loaded manually with a fully
equipped base plate including all electrical components and
a feeder of prefabricated wires.

II. METHODS AND TECHNOLOGY

During runtime, the task specification formalism
iTaSC [1], [2] is utilized to describe and solve the control
problem based on the active skills of the composed
application. iTaSC uses closed kinematic loops to map
task-specific control problems expressed in their specific
feature space (e.g. force control represented in a Cartesian
force frame) to an arbitrary kinematic chain (i.e. target joint
velocities of an industrial robot).

For multi-arm applications one loop may contain several
robots, effectively concatenating them to a single manipulator
with one shared feature space or involve multiple closed
kinematic loops each containing separate robots and respec-
tive feature spaces.

By realizing an iTaSC solver with the task-priority strat-
egy [3], [4], simultaneous control problems can be handled
within respective nullspace of higher prioritized constraints.

2https://youtu.be/xXR2FxPVqa4

https://youtu.be/xXR2FxPVqa4


Fig. 2. Schematic of the control framework

New measurement data, i.e. robot joint positions and
external force-torque-sensor measurements, is acquired con-
tinuously and the kinematic loop equations of iTaSC are
solved in real-time. In this way, reference velocities for the
robot joints are calculated accordingly and commanded to
the robot.

The application is composed of building blocks named
skills. All skills have a similar appearance, despite modeling
different behaviors. Some being purely compositional to or-
ganize the program flow, others reflecting elementary robotic
capabilities or represent complete composites of e.g. assem-
bly strategies. An overview of general and elementary skills
can be found in [5], [6].

Every skill is ultimately based on elementary skills that
encapsulate basic robot behavior, e.g. a linear movement.
Composite skills may include elementary skills directly or
nested sub-composites to define complex behaviors — e.g. a
parallel hierarchy of nested movement and force skills. Other
possibilities include sequences of skills and the arrange-
ment as general state machines. Every skill transition is
guarded by one or more monitors. Skills may come with
predefined monitors. The target of a respective transition
may be inherited from a higher-level compositional skill
or is specified explicitly. Further, a skill may overwrite
its inherited controller with a customized special-purpose
implementation [7].

The application and all compositional elements are repre-
sented and prototyped using an XML based DSL — in partic-
ular skills, monitors and controllers [8]. Reference velocities
for the robot joints are calculated based on the runtime loop
described before. This leads to immediate reusability of skills
and subskills, as well as skill components, such as monitors
and controllers. The overall control framework is depicted
in Fig. 2.

III. APPLICATION AND DEVELOPMENT

For the automated wiring application several challenging
subtasks were resolved. Based on the extensive existing skill
library no elementary behavior needed to be implemented.
Project-specific implementations were limited only to spe-
cialized force controllers — able to cope with single-sided

nonlinear behaviour of rope/wire pulling. The main work of
the application development consists of skill composition and
orchestration.

The application was divided into subtasks, represented by
macro-skills respectively (Fig. 3). The application is loaded
with a set of parameters extracted from the wiring plan
represented in CAD. The usual coordination mechanism
of the control framework consists of a hierarchical state-
chart that is statically created from the application’s skills
in a systematic way, prior to execution. However, as the
properties and routing information of the wires differ to
a large extent, the macro-skills have to be reparametrized
and rescheduled during runtime. This was modelled by an
additional Coordinator entity that stores all parameters and
prepares a specifically parametrized macro-skill sequence.
Besides the parametrization of, e.g. push-in poses and the
wiring route waypoints, the most significant decision based
on the parameters is the direction of the wiring and thus
which robot will perform the first push-in and the primary
routing. This decision is made based on heuristics respecting
the reachability of the robots and the danger of entangling.
The Coordinator technically is a skill that does not include
any motion but executes the parametrized macro-skills. As
the dynamic reconfiguration of the macro-skills is a non-
typical requirement, the Coordinator was hand-crafted for
this application and does not follow a generalized model.

The first subtask (A) picks up the wire and moves to an
initial pose, the next task (B) moves the wire to the first
push-in position. Consequently, task (C) performs the push-in
and releases the wire. Regrasping of the wire is realized
in (D) for switching the function of the first gripper from
fixing the cable to guiding. This task further includes the
initial diving into the cable duct. The routing of the wire may
consist of several straight lines with intermediate 90◦ corners.
Task (E) models one straight motion within the cable duct
and task (F) models rotation around a corner. Most routes
will include several executions of differently parametrized
tasks (E) and (F). The last part of the route is modeled
in (G) separately. Finally, (C) performs the second push-in.
Task (H) is executed with both, the first and the second arm,
to perform a delicate operation to push the wires into the
fixation of the cable ducts at the entry and exit locations of
the wire. For completeness, a recovery and homing task (I) is
included.

The advantages of the constraint-based programming ap-
proach particularly emerged for the subtasks (B) and (E).
During subtask (B), the two robots rotate downwards in a
coordinated movement. The operation is defined as a hierar-
chy of two concurrent subtasks: 1) The wrist joints rotation is
defined in joint space, while 2) the horizontal position of the
robots’ TCPs is kept constant. This is necessary to avoid both
the wire being wrapped around the tools and the wire being
stretched. During subtask (E), the first robot moves along the
cable duct, routing the wire, while the second robot moves
down to avoid stretching the wire. Through the constraint-
based task specification approach, this was possible in an
elegant and targeted manner. The height of the robot holding



Coordinator

(A)

(B)

(C) (D) (E) (F) (G)

(H)

(I)

Parameters
extracted

from CAD

Fig. 3. High level overview of the composed state machine. Each shown
macroskill is parametrized by the Coordinator during runtime and contains
multiple levels of nested sub-state machines.

the wire is defined by the travel path of the routing robot.
In contrast, native robot programming approaches typically
focus on individual robots, while coordination is usually
introduced through synchronization points in the robot pro-
gram.

Additionally, the constraint-based programming approach
made manual transformations between the task space of the
previously planned wiring map and the robot operation space
obsolete. To achieve this, the task space coordinate frame
was placed in the corner of the cabinet’s base plate, with
the axes aligned to the plate. Thus, the CAD data could be
used as target coordinates without preprocessing, while the
transformation to robot operation space was handled by the
iTaSC formalism.

A divide-and-conquer approach with a strong skill-based
programming scheme was essential for realizing this project.
Each macro-skill was individually designed, composed, and
tested. Rigorous separation of concerns paved the way for
efficient parallel developments. A high reuse rate of pre-
viously developed and thoroughly tested skills minimized
the risk of software bugs. The constraint-based programming
approach made manual transformations between the bird’s-
eye view task space of the planned wiring map and the
robot operational space obsolete and reduced the overall
development time dramatically.

REFERENCES

[1] J. D. Schutter, T. D. Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based Task
Specification and Estimation for Sensor-Based Robot Systems in
the Presence of Geometric Uncertainty,” The International Journal
of Robotics Research, vol. 26, no. 5, pp. 433–455, 2007. [Online].
Available: http://ijr.sagepub.com/content/26/5/433.full.pdf

[2] R. Smits, T. D. Laet, K. Claes, H. Bruyninckx, and J. D. Schutter,
“iTASC: a tool for multi-sensor integration in robot manipulation,”
in 2008 IEEE Int. Conf. on Multisensor Fusion and Integration for
Intelligent Systems. Piscataway, NJ: IEEE Computer Society, 2008,
pp. 426–433.

[3] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-Priority Based
Redundancy Control of Robot Manipulators,” vol. 6, no. 2, pp. 3–15,
1987.

[4] B. Siciliano and J.-J. E. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” in 1991 Int. Conf.
on Advanced Robotics, 1991, pp. 1211–1216 vol.2.

[5] L. Halt, F. Nägele, P. Tenbrock, and A. Pott, “Intuitive constraint-based
robot programming for robotic assembly tasks,” in 2018 IEEE Int. Conf.
on Robotics and Automation (ICRA). IEEE Computer Society, 2018.

[6] L. Halt, P. Tenbrock, F. Nägele, and A. Pott, “On the implementation of
transferable assembly applications for industrial robots,” in 2018 IEEE
. Symposium on Robotics (ISR). VDE Verlag, 2018.

[7] F. Nägele, L. Halt, P. Tenbrock, and A. Pott, “Composition and
Incremental Refinement of Skill Models for Robotic Assembly Tasks,”
in 2019 IEEE Int. Conf. on Robotic Computing (IRC). Los Alamitos:
Conference Publishing Services, IEEE Computer Society, 2019, pp.
177–182.

[8] ——, “A prototype-based skill model for specifying robotic assembly
tasks,” in 2018 IEEE Int. Conf. on Robotics and Automation (ICRA).
IEEE Computer Society, 2018.

http://ijr.sagepub.com/content/26/5/433.full.pdf

	Introduction and Project
	Methods and Technology
	Application and Development
	References

