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Abstract— Robotic manipulators that can coexist with hu-
mans need formal safety guarantees. Current solutions cannot
handle both input and state constraints, reduce the robot
capabilities, or are computationally too expensive. To tackle
these drawbacks, we analyzed the Trajectory-Based Explicit
Reference Governor, which can address both input and state
constraints, and does not require any online optimization. We
present the methodology for a generic robot arm and show
results for the Franka Panda manipulator. The proposed control
scheme is able to steer the robot arm to the desired end-effector
position, or an admissible approximation, in the presence of
limited joint ranges, actuator saturations, and static obstacles.

I. INTRODUCTION

In recent years, manufacturing companies are adopting
mass customization strategies. The resulting increased flex-
ibility in the production environment can be obtained by
combining the qualities of humans with the qualities of
robots [1]. For collaborative robots that are able to work
directly in proximity of human operators, the safety issue is
of major importance [2].

To obtain safe human-robot coexistence, the typical in-
dustrial robot manipulators are re-engineered with passive
compliant actuators like Variable Impedance Actuators [3]
or by the addition of joint torque sensors [4]. To make the
robot’s actions more predictable for the human, the robot’s
motions are made more human-like, but this strategy cannot
guarantee safety without the addition of input and state
constraints [5].

A randomized kinodynamic path planning approach can be
used to handle joint angle limitations in cluttered environ-
ments, but computing safe trajectories take too long, making
it less suitable for tasks with quickly changing specifications
[6]. Kinetostatic safety fields, based on the cumulative danger
field and on the repulsive potential field approach, capture
the risk in the vicinity of an arbitrary rigid body moving in
space, but does not take into account input constraints [7].

In [8] joint angle, velocity, and acceleration constraints
together with obstacle constraints are taken into account, but
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torque constraints are not considered.
Due to recent advancements in computational perfor-

mances, Model Predictive Control can be implemented on
robots to handle both state and input constraints in real-time
[9]. However, the application possibilities are limited because
of the typically non-negligible computational cost.

We base ourselves on the Explicit Reference Governor
(ERG), a closed-form feedback control scheme that can
enforce both state and input constraints of nonlinear systems
without having to solve an online optimization problem [10].
In [11] the idea was explored on a 2DOF robotic manipulator,
here we analyze the methodology on the Franka Panda robot.

II. TRAJECTORY-BASED
EXPLICIT REFERENCE GOVERNOR

Consider the joint space dynamic model of a manipulator

MMM(qqq)q̈qq+CCC(qqq, q̇qq)q̇qq+ggg(qqq) = τττ (1)

where qqq ∈ Rn is the vector of joint variables, MMM(qqq) > 0
is the mass matrix, CCC(qqq, q̇qq)q̇qq accounts for the Coriolis and
centrifugal forces, ggg(qqq) is the influence of the gravity on the
manipulator, and τττ ∈ Rn is the control input vector.

The system is subject to non-convex constraints. Here we
consider three classes of constraints:
• Input Saturation: the torque applied to the joints is

limited, i.e. τττmin≤ τττ ≤ τττmax, with τττmin < 0 and τττmax > 0.
• Operating Region Constraints: the robot arm has satu-

rated ranges and can move in a simply connected region,
i.e. QQQ = {qqq : qqqmin ≤ qqq≤ qqqmax}.

• Static Obstacle Avoidance: the robot should avoid a
collection of static spherical objects j = {1, . . . ,n0} of
radius r j centered in ccc j ∈R3. Therefore we will model
the manipulator as n segments xxxixxxi+1, i = {1, . . . ,n}.

Given the joint space dynamic model (1) and the proposed
constraints, the objective is to design a computationally
simple control scheme for a manipulator that has to reach
the end-effector reference position xxxe,r, while satisfying the
above mentioned constraints.

The control architecture consists of two layers as shown
in Fig. 1. The control layer pre-stabilizes the system,
whereas the navigation layer manipulates the reference of
the pre-stabilized system so that the constraints are always
satisfied and the robotic arm is able to track the desired
reference.
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Fig. 1. Proposed Constrained Control Architecture − The desired end-effector pose xxxe,r is given as input to the inverse kinematics block, which generates
the desired joint angles qqqr . These desired joint angles are given to the ERG block, which returns the attainable joint angles qqqv considering the imposed
constraints, i.e. (3). This vector qqqv is given as input reference to the PD+g control block which pre-stabilizes the manipulator, i.e. (2).

Given an auxiliary reference qqqv expressed in joint space,
the robotic manipulator is pre-stabilized using the classic PD
with gravity compensation approach, i.e.

τττ = KKKP(qqqv−qqq)−KKKDq̇qq+ggg(qqq). (2)

In the navigation layer, the desired reference qqqr is dynam-
ically filtered by the ERG to ensure constraint satisfaction.
The idea behind the ERG is to generate the applied reference
signal qqqv so that, if qqqv were to be frozen at any time instant,
the transient dynamics of the pre-stabilized system would
not violate the constraints. This is achieved by manipulating
the derivative of the applied reference q̇qqv in continuous time
using the nonlinear control law

q̇qqv = ρρρ(qqqv,qqqr) ∆(qqq, q̇qq,qqqv) , (3)

where ρρρ(qqqv,qqqr) is the navigation field, i.e. a vector field
that generates a constraint-admissible path of equilibria that
connects the applied reference qqqv with the desired reference
qqqr requested by the user, and ∆(qqq, q̇qq,qqqv) is the dynamic
safety margin, i.e. a measure of the distance between the
constraints and the future trajectory of the system if qqqv were
to remain constant. In the Trajectory-Based ERG, the forward
dynamics are simulated by using the Simplectic Euler for a
finite time horizon with initializations q̂qq(0) = qqq and ˙̂qqq(0) = q̇qq.
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Fig. 2. Dynamic Safety Margin (DSM) of the torques (∆τ ), joint angles
(∆q), and spherical obstacle (∆sphere) for an experiment where step references
are given to the robotic manipulator.

We validated this methodology on the Franka Panda
robotic manipulator during a pick-and-place task. In Fig. 2
we can see that the end-effector reference given in t ∈ [2,5]s
was very close to one of the joint angle limits since ∆q is

pushed towards 0. The end-effector reference given in t ∈
[5,10]s was in the interior of the spherical obstacle, but the
robot could avoid it and go back to its initial configuration.
The robot was slowed down by the respective DSM values
as can be seen in Fig. 2.

In the accompanying video, i.e. https://youtu.be/
VAYV9x25da4, we show experiments with wall and cylin-
drical obstacles in which the robot has to carry a load of
2kg. The more weight is added to the robot end-effector, the
more important the torque constraints become.

III. CONCLUSIONS

The proposed real-time control scheme can successfully
satisfy input and state constraints while steering the robotic
manipulator towards the desired end-effector positions or an
admissible approximation thereof. The experiments are pre-
sented for static environments, but the proposed methodology
is still usable in real-time for dynamic environments with
model and environmental disturbances, which will be part
of our future work.
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